您的位置:网站首页 > Solidworks

液压锥阀的有限元分析及优化设计

时间:2010-06-02 08:00:00 来源:

    3.计算结果分析
   
    (1)可看出流体通过锥阀阀口时,流速迅速增大(见图3),压力减小(如图2、图3所示)。
    (2)从图3可明显看出,除了从流人到流出的主流外,在阀腔内形成了两处漩涡流,一处位于阀座拐角处(漩涡1),另一处位于阀心处(漩涡2),漩涡产生了能量的局部损失,因而此处出现了低压区。
    (3)理论可知,各种阀类能量损失和噪声的产生主要原因之一是漩涡的存在,因此就要通过消除或缓解漩涡的产生来提高锥阀能量利用率,降低噪声,提高使用寿命。
   


    三 锥阀的优化设计
   
    由于漩涡1的强度较小,对阀的性能影响较小。可以将阀腔的拐角弧形化,但考虑到加工难度和成本,意义并不大。漩涡2尺寸较大,强度较强,本文通过改变阀心的结构,来改善漩涡存在的情况。
   
    1.优化锥阀的有限元建模优化锥阀的有限元建模如图4所示。
   
    2.优化结果显示
   
    前提条件完全相同,同样采取自动网格划分,划分流体单元为.5236个,迭代了35次。流体流动状况如图5、图6所示。
   


    3.对比分析
   
    (1)通过图6和图3的对比,可以明显的看出优化锥阀通过在结构上消除漩涡2存在的区域,基本上消除了漩涡2,使流场分布相对稳定。
    (2)图7也明显说明了优化锥阀较一般锥阀速率变化相对平稳,以减小能量损失。
    (3)图7可定性地显现出优化锥阀压力变化较一般锥阀平稳,缓解了的压力尖角状态,从而降低了压力损失,达到优化锥阀结构性能的目的。
    (4)定量分析压力损失两种锥阀的压力损失比较如表1所示。
   


    由表1定量的得出优化锥阀降低了压力损失,由于流体在流动时必然会产生能量损失,因此完全消除压力损失是不能的,只有尽可能地减少损失,优化其性能。同时优化锥阀还提高了阀腔内的最小负压值,因而缓解了气蚀现象。这都有利于提高阀的性能。

    四 结束语
    
    本文通过对液压锥阀的三维有限元分析,对锥阀阀心进行了优化设计,降低了压力损失,提高了能量利用率。可视化的分析过程的结果为合理设计液压阀阀流道结构提供了理论依据,对其它的液压阀的设计及优化有一定的参考意义。本文仅是有限元法在液压机械应用中的一个实例,如何更充分地将CAD,CAF等先进技术手段应用到工程设计工作中来,已是未来的发展趋势。