您的位置:网站首页 > Solidworks

塑料蜗轮传动啮合性能有限元分析

时间:2010-06-02 08:00:00 来源:
副标题#e#    塑料蜗轮与钢制蜗杆传动是将蜗轮材料用塑料代替传统金属的蜗杆传动机构。由于塑料齿轮加工经济性好、而且传动平稳、吸振降噪、质量轻、耐磨、自润滑等优点,所以在汽车座椅、家电设备等轻动力传输中得到了广泛应用。在传动过程中,因为塑料比碳钢的弹性模量低,蜗轮受载后呈局部区域接触。整个传动磨损几乎都在塑料蜗轮上,啮合区的摩擦热也会迅速上升,直接影响了塑料蜗轮的使用寿命。并且塑料蜗轮强度低、易变形、导热与耐热性差等缺点,所产生的热量不易排除,所以塑料蜗轮的失效温度占主导地位。因此,研究塑料蜗轮啮合区温度对啮合性能影响就非常重要,本文通过SolidWorks建立的传动模型,利用MSC. Patran/Nastran有限元软件分析在传动中啮合温度达到平衡后,塑料蜗轮齿廓的变形应力情况。并与啮合温度为常温的工况进行比较。
   
    1建立传动模型及有限元前处理
   
    依据蜗轮蜗杆的基本参数与结构尺寸(见表1),利用SolidWorks生成蜗轮蜗杆传动模型。导人MSC. Patran/Nastran中,如图1所示。
   


    为了完全反应齿轮在周期运动过程中的齿轮啮合情况,必须建立蜗轮蜗杆传动过程中的各个位置模型。随着蜗杆旋转,轮齿上接触区的位置是呈周期性变化的。其周期为9°,塑料蜗轮每旋转9°,则需要蜗杆旋转一周。将蜗轮蜗杆啮合位置分为6个位置(见表2).
   


    设置蜗轮蜗杆材料属性分别为聚甲醛塑料(POM)和合金钢16MnCr5。网格划分采用于动划分六面体网格,为提高接触面处的精确性,对轮齿啮合部分进行网格细化。节点总数为160 023,单元总数为141 168,节点自由度总数为852 152。蜗轮蜗杆材料物理性能参数和热力学系数(见表3、表4)。
   


    设置边界条件。由实验所测得的蜗轮蜗杆加载后,啮合区温度达到平衡,啮合温度为100℃,建立蜗轮蜗杆的本体温度场(如图2所示),为蜗轮有限元结构分析提供温度场边界条件,由图2可知啮合区域温度为100℃;将蜗轮设置为固定;在蜗杆两端设置轴承支座,仅允许蜗杆轴向的移动与转动;设置作用于蜗杆的外载荷力,在蜗杆左端面设定轴向方向的推力;接触类型将蜗轮与蜗杆接触齿对设为接触组,并定义蜗轮接触类型为GAP。并且设定蜗轮的最大载菏为30 N·m。