副标题#e# 随着计算机辅助设计技术的飞速发展与功能的不断完善,工程技术人员的设计方法和手段越来越丰富。尤其是三维CAD/CAM软件的广泛应用与普及,使得现代机械产品设计逐步进入三维设计时代。三维设计具有形象、直观、精确、快速的特点,在新产品开发的方案设计、结构分析、产品性能的评估、确定和优化物理样机参数过程中能够起到决定性作用,并为新产品研发一次成功,提供了强有力的技术支持。
Solidworks/Motion是基于Windows环境的参数化三维实体造型软件。为广大工程技术人员提供了在单一的Windows界面上无缝集成实体造型、有限元分析和优化设计、虚拟装配、三维机构运动仿真、运动干涉检查、工艺规程生成、数控加工、三维实体图转化二维工程图、产品数据共享与集成等多种多样的功能。
本文以某型号的三轴模拟摇摆复现机械装置为例,介绍应用SolidWorks/Motion软件进行三轴模拟摇摆复现机械装置在三维实体造型、装配、三维机构运动仿真及运动部件干涉检查的过程和方法。
该三轴模拟摇摆复现机械装置主要由内环、中环、外环和机座组成,如图1所示。
一、三维实体造型设计
三轴模拟摇摆复现装置的测量系统精度相对较高,因此在进行三轴模拟摇摆复现装置的机械台体结构设计时,要确保机械台体结构的刚度能够满足测量系统精度要求,同时还要进行结构的优化,在满足刚度和强度的前提下,使机械台体的重量尽量轻,各转动部件的转动惯量尽量小。从系统的驱动功率、运动平稳性及控制性等方面来考虑,机械台体的重心位置越接近转动轴线越好。但从安全角度考虑,各转动部件重心位置应控制在回转轴下方一定范围内。
根据设计任务书安装台面尺寸和承载要求等技术参数和指标,结合以往的设计经验,先初步确定机械台体的结构尺寸、断面尺寸、板材厚度,初步进行三维造型设计,完成零部件设计并按相应的关联约束进行装配。
首先确定各转动部件重心位置。若重心位置不合适,可采用在下部添加配重块或改变结构尺寸的方式满足重心位置的要求。对各部件进行有限元计算,检验各部件的应力和应变是否满足测量系统精度要求。若不能满足要求,则对相应部件的结构进行修改直至满足要求。
二、机构运动仿真分析及干涉检查
1.机构运动仿真分析
机构运动仿真的模型应采用自底向上的装配方法,建立一个三轴摇摆复线机械装置装配体。首先插入已完成的机座,使机座部件的三个定义平面与装配体的三个定义平面相重合,这样就可以将机座部件完全约束固定。然后再逐次将外环、中环、内环按相对应的装配关系进行约束。如图1所示,外环与机座约束两个自由度,外环可以绕Y轴摆动;中环与外环同样约束两个自由度,中环绕X轴可以摆动;内环与中环也约束两个自由度,内环绕Z轴可以摆动。
对已经做好的装配体模型,即可用Solidworks/Motion进行运动仿真,根据任务书给定的相关条件和参数,可以模拟产品的不同运动状态,检验产品的运动性能及产品的设计计算结果正确性。
如图2所示,用鼠标将箭头所指按钮1点下,即可出现如图3所示的左边窗口。确认Revolute是否对应Y轴(艏摇轴),Revolute2是否对应X轴(横摇轴),Revolute3是否对应Z轴(纵摇轴)。用鼠标选取“Revolute”按钮,然后点击右键,选择“Properties”出现如图3所示的右边窗口,在该窗口中可以添加各摇摆轴的摇摆方式(displacement)、摇摆数学模型(Harmonic)、幅值、周期、角速度和角加速度参数等。在Motion的下拉菜单中选取“Intellimotion Builder”按钮,出现如图4所示的窗口,在此窗口中可以添加运行的时间和计算的点数,一般取2~3个周期,500~1000个计算点即可。
Solidworks/Motion是基于Windows环境的参数化三维实体造型软件。为广大工程技术人员提供了在单一的Windows界面上无缝集成实体造型、有限元分析和优化设计、虚拟装配、三维机构运动仿真、运动干涉检查、工艺规程生成、数控加工、三维实体图转化二维工程图、产品数据共享与集成等多种多样的功能。
本文以某型号的三轴模拟摇摆复现机械装置为例,介绍应用SolidWorks/Motion软件进行三轴模拟摇摆复现机械装置在三维实体造型、装配、三维机构运动仿真及运动部件干涉检查的过程和方法。
该三轴模拟摇摆复现机械装置主要由内环、中环、外环和机座组成,如图1所示。
图1 三轴模拟摇摆复现机械装置示意图
一、三维实体造型设计
三轴模拟摇摆复现装置的测量系统精度相对较高,因此在进行三轴模拟摇摆复现装置的机械台体结构设计时,要确保机械台体结构的刚度能够满足测量系统精度要求,同时还要进行结构的优化,在满足刚度和强度的前提下,使机械台体的重量尽量轻,各转动部件的转动惯量尽量小。从系统的驱动功率、运动平稳性及控制性等方面来考虑,机械台体的重心位置越接近转动轴线越好。但从安全角度考虑,各转动部件重心位置应控制在回转轴下方一定范围内。
根据设计任务书安装台面尺寸和承载要求等技术参数和指标,结合以往的设计经验,先初步确定机械台体的结构尺寸、断面尺寸、板材厚度,初步进行三维造型设计,完成零部件设计并按相应的关联约束进行装配。
首先确定各转动部件重心位置。若重心位置不合适,可采用在下部添加配重块或改变结构尺寸的方式满足重心位置的要求。对各部件进行有限元计算,检验各部件的应力和应变是否满足测量系统精度要求。若不能满足要求,则对相应部件的结构进行修改直至满足要求。
二、机构运动仿真分析及干涉检查
1.机构运动仿真分析
机构运动仿真的模型应采用自底向上的装配方法,建立一个三轴摇摆复线机械装置装配体。首先插入已完成的机座,使机座部件的三个定义平面与装配体的三个定义平面相重合,这样就可以将机座部件完全约束固定。然后再逐次将外环、中环、内环按相对应的装配关系进行约束。如图1所示,外环与机座约束两个自由度,外环可以绕Y轴摆动;中环与外环同样约束两个自由度,中环绕X轴可以摆动;内环与中环也约束两个自由度,内环绕Z轴可以摆动。
对已经做好的装配体模型,即可用Solidworks/Motion进行运动仿真,根据任务书给定的相关条件和参数,可以模拟产品的不同运动状态,检验产品的运动性能及产品的设计计算结果正确性。
图2 按钮标识
如图2所示,用鼠标将箭头所指按钮1点下,即可出现如图3所示的左边窗口。确认Revolute是否对应Y轴(艏摇轴),Revolute2是否对应X轴(横摇轴),Revolute3是否对应Z轴(纵摇轴)。用鼠标选取“Revolute”按钮,然后点击右键,选择“Properties”出现如图3所示的右边窗口,在该窗口中可以添加各摇摆轴的摇摆方式(displacement)、摇摆数学模型(Harmonic)、幅值、周期、角速度和角加速度参数等。在Motion的下拉菜单中选取“Intellimotion Builder”按钮,出现如图4所示的窗口,在此窗口中可以添加运行的时间和计算的点数,一般取2~3个周期,500~1000个计算点即可。
图3 设置窗口
相关文章
- 2021-09-08BIM技术丛书Revit软件应用系列Autodesk Revit族详解 [
- 2021-09-08全国专业技术人员计算机应用能力考试用书 AutoCAD2004
- 2021-09-08EXCEL在工作中的应用 制表、数据处理及宏应用PDF下载
- 2021-08-30从零开始AutoCAD 2014中文版机械制图基础培训教程 [李
- 2021-08-30从零开始AutoCAD 2014中文版建筑制图基础培训教程 [朱
- 2021-08-30电气CAD实例教程AutoCAD 2010中文版 [左昉 等编著] 20
- 2021-08-30电影风暴2:Maya影像实拍与三维合成攻略PDF下载
- 2021-08-30高等院校艺术设计案例教程中文版AutoCAD 建筑设计案例
- 2021-08-29环境艺术制图AutoCAD [徐幼光 编著] 2013年PDF下载
- 2021-08-29机械AutoCAD 项目教程 第3版 [缪希伟 主编] 2012年PDF