您的位置:网站首页 > Solidworks

不同螺距轴向滑块凸轮式差速器的仿真分析

时间:2010-06-02 08:00:00 来源:

   3)左右两轮的转矩分配关系
  
   差速器性能的主要评价参数是其锁紧系数,定义为差速器的内摩擦转矩乃与差速器壳接受的转矩T0之比,即
  
   k=T3/T0
  
   定义快慢差速论的转矩之比T2/T1,为转矩比,以kb表示
  
   kb=T2/T1=(1+k)/(1-k)
  
   普通圆锥齿轮差速器的锁紧系数为K=0.05~0.15,左右两轮的转矩比kb=1.11~1.35,如果主减速器传给差速器的驱动转矩为100N·m,则普通圆锥齿轮差速器的内摩擦转矩几乎等于O,左右半轴转矩比近似为50:50。
  
   仿真结束后,分别输出差速器壳、差速轮的反作用转矩曲线,图9、图lO分别就是左右轮合反转矩为100 N·m、110N·m时,轮l、轮2及差速器壳的反作用转矩曲线,其中图a,b分别是轮l、轮2的反作用转矩曲线,图c是差速器壳的反作用转矩曲线。
  


   在Excel中分别输出、并计算两图中差速器壳的反作用转矩平均值,结果分别是100.47 N·m和110.78 N·m。根据作用力和反作用力的关系,轮l、轮2及差速器壳的反作用转矩,即是它们各自的驱动转矩。设由主减速器传给差速器壳的转矩为%,分配给轮l、轮2的转矩分别为L和疋。由曲线图和计算结果分析得到两轮的驱动转矩符合下列关系
  
   T1+T2=T0
  
   上述仿真模拟的是车辆转弯时的情况,即ω1<ω2(轮l、轮2的角速度分别为ω1,ω2)。由于滑块与羞速轮的螺旋面、以及差速轮与差速器壳间的相对滑动均存在较大的摩擦.所以将产生一内摩擦转矩T3,该摩擦转矩使慢转的轮l转矩增加,而使快转的轮2转矩减小。因此当左、右轮存在转速差时,T1=(T0+T3)/2 ,T2=(T0-T3)/2即满足
  
  
   分析时截取合反转矩在50~llO N·m之间的一段数据,并且从中提取出仿真中即将出现不正常差速的l临界值,其如表2所示。
  
   从表2中,可以得到在50~110 N·m范围内,锁紧系数的平均值为0.36,最大内摩擦转矩的平均值为24.86 N·m,左右两轮的转矩比平均值为2.09。这与内摩擦小,锁紧系数小的普通锥齿轮差速器相比具有比较大的优越性,基本上能满足汽车越野通过性的要求。
  


   2.3.2 发动机排量为500 ml螺距为120 mm时的仿真与分析
  
   在仿真中还选取发动机排量为500 mL.螺距为120 mm的差速器模型作为仿真对象。图11是发动机排量500 mL.螺距为120 mm,两差速轮输入100 N·m合反转矩时,差速轮和差速器壳反作用转矩曲线,其中罔a.b分别是轮l、轮2的反作用转矩曲线,图c是差速器壳的反作用转矩曲线。
  


   3 结论
  
   1)当反转矩差≤24N·m时,差速器在50-110N·m范围内的各反转矩下,基本上都能正常差速运行,并且左右两侧差速论的角速度之和和近似等于差速器壳角速度的两倍,
  
   即:ω1+ω2≈2ω0
  
   2)当两差速论合反转矩减小到40N·m,且转矩差≤30N·m时,差速器基本上就不再差速了。
  
   3)在发动机排量为500 mL,差速轮和滑块的螺距为84 mm时,锁紧系数的平均值为O.36,内摩擦转矩的平均值为24.86 N·m,左右两轮的转矩比为2.09,满足了汽车越野通过性的要求。
  
   4)通过改变差速轮和滑块的螺距.即改变螺旋面的倾角,会得到不同的锁紧系数.两轮转矩比也会相应地增大。
  
   5)目前.该差速器在发动机500 mL以下排量(功率在25 kw以下)车辆上已得到r实际应用,效果良好。但是,用于发动机大排量车辆的差速器尚处于试验研究阶段,许多性能参数有待于进一步探讨研究。

相关文章