您的位置:网站首页 > CAM

氮化硅陶瓷刀具性能及应用

时间:2011-02-27 10:22:17 来源:

    氮化硅(Si3N4)陶瓷刀具有很高的耐磨性、红硬性,可以进行高速切削、减少换刀次数及减少由于刀具磨损而造成的尺寸误差。在数控机床、加工中心上应用具有更明显优势,可大大提高生产效率和产品质量。

    2.氮化硅陶瓷刀具的切削性能?

    (1)高硬度?氮化硅陶瓷刀片的室温硬度值已超过了最好的硬质合金刀片硬度,达到92.5~94HRA,这就大大提高了它的切削能力和耐磨性。它可以加工硬度高达65HRC的各类淬硬钢和硬化铸铁,可节省退火加工所消耗的电力。其优良的耐磨性不仅延长了刀具的切削寿命,而且还减少了加工中的换刀次数,从而保证切削工件时的小锥度和高精度,尤其是用于数控机床进行高精密连续加工时,可减少对刀误差和因磨损引起的不可预测的误差,简化刀具误差补偿。?

    (2)高强度?目前氮化硅陶瓷刀片的抗弯强度已达到750~1000MPa,超过了高速钢,与普通硬质合金相当。

    (3)良好的抗高温氧化性?氮化硅陶瓷刀片的耐热性和抗高温氧化性特别好,即使在1200~1450℃切削高温时仍能保持一定硬度和强度,进行长时间切削,因此允许采用远远高于硬质合金刀具的切削速度实现高速切削。其切削速度比硬质合金刀具提高3~10倍,因而能大幅度提高生产效率。实验证明,在众多的陶瓷材料中,Si3N4陶瓷具有最佳的耐热性。

    (4)良好的断裂韧性?断裂韧性值是评价陶瓷刀片抗破损能力的重要指标之一,它与材料的组成、结构、工艺等因素有关。Si3N4系列陶瓷刀片的断裂韧性值优于其他系列陶瓷刀片(达6~7MPam1/2),接近某些牌号的硬质合金刀片,因而具有良好的抗冲击能力,尤其在进行铣、刨、镗削及其它断续切削时,更能显示其优越性。?

    (5)抗热震性强?陶瓷材料的抗热震性是指其在承受急剧温度变化时,评价其抗破损能力的重要指标。Si3N4系列陶瓷刀片由于强度高、热膨胀系数低,抗热震性能指标△T高达600~800℃,明显优于其它系列陶瓷刀片(300~400℃),因而在高强度断续零件的毛坯加工方面,显示出独特的优越性能。?

    3.氮化硅陶瓷刀具的实际应用?虽然我国陶瓷刀具的研究水平不比国外差,但实际应用发展较慢。据有关资料报导,目前国内陶瓷刀具占总刀具使用量的比例不超过1%。氮化硅陶瓷刀具是近年来才在生产中推广使用的一种新型刀具。因此,不论在刀具的几何参数、切削用量以及使用技术方面,均缺乏成熟的经验。陶瓷刀具的实际应用是一项需要综合各方面技术的系统工程,决不是只要买了陶瓷刀具换上就可以解决问题。加之陶瓷刀具本身所具有的物化特性、加工时的切削性能与普通刀具有着相当大的差别,因此在应用时,必须考虑以下几个方面的问题。?

    3.1对机床的要求?陶瓷刀具材料对冲击和振动载荷比较敏感,这是陶瓷刀具材料在耐冲击和抗振性方面的最大弱点。机床—工件—刀具工艺系统刚性弱是促使陶瓷刀具寿命降低或崩刃的主要原因。其中除工件和刀具本身的刚性因素外,机床刚性愈小,则振动愈大,而刀具寿命也就愈低。需要特别指出,在分析机床刚性时,一定要综合考虑机床—工件—刀具工艺系统的刚性,而不是孤立地考虑机床的刚性,必须同时考虑工件、夹具、顶尖及刀具的刚性等。

任何环节的刚性不足都将大幅度地降低陶瓷刀具的切削性能和效率。实践证明,适于陶瓷刀具加工的机床必须具有良好的刚性、足够的功率和高的转数。?分析国内目前机床情况可以看出,中型机床在精、半精加工时这三方面都基本满足要求。对淬硬钢或硬镍铸铁等难加工材料的加工,由于其选用的切削速度较低,即使采用陶瓷刀具来加工,其功率也是足够的,而在普通钢材或铸铁粗加工时往往这三方面都不容易满足。重型机床的刚性好,有足够的转速及功率,只要使用得当,在重型工件的加工中,采用陶瓷刀具的成功率往往较高。
    3.2对被加工零件的要求?

    (1)虽然陶瓷刀具对大多数铸、锻件不退火就能进行毛坯扒荒加工,但硬铸件毛坯上的严重夹砂和砂眼将会引起许多不必要的打刀,增加了陶瓷刀具的消耗。如果能在切削加工前对毛坯进行适当处理,如切削前先用手砂轮对缺陷部分进行清理、修正,就会得到比较好的加工效果。

    (2)高速转动的高硬毛坯的任何一点毛边都有可能打坏陶瓷刀具,而从已车圆了的毛坯开始切削,却可以长期稳定地切削。因此对于那些硬度高而形状不规则的毛胚,应注意必须先倒角后再用陶瓷刀具切削。毛坯切入处的倒角,可避免陶瓷刀具刚接触工件时承受过大的冲击载荷。毛坯切出处的倒角,主要是为避免陶瓷刀具切离零件时被留下的一圈料边打坏。

    (3)机床与被加工零件的情况要匹配,避免“小马拉大车”等现象。?

    3.3氮化硅陶瓷刀具合理几何参数的选择?虽然氮化硅陶瓷刀具是一种切削性能优良的刀具,但是如果不能在使用中合理地选择其几何参数,仍然不能很好地发挥其作用。所谓刀具的合理几何参数,是指能保证粗加工或半精加工刀具有较高的生产率和刀具寿命,精加工刀具能保证加工出符合预定尺寸精度和表面质量的工件,同时也具有较高的刀具寿命相应的刀具几何参数。?在选择陶瓷刀具的合理几何参数时,除要考虑刀具的一般规律外,同时也必须考虑某些属于陶瓷刀具所特有的规律。氮化硅陶瓷刀具是一种硬而脆的刀具,如何保证其使用的稳定可靠、不发生崩刃仍然是选择氮化硅陶瓷刀具合理几何参数的主要依据;氮化硅陶瓷刀具的结构主要是机夹可转位刀具,所以必须结合其结构特点来考虑选择合理几何参数。?

    3.4合理选择切削用量?合理选择切削用量,是充分发挥陶瓷刀具切削性能的基本问题之一。切削用量直接影响加工生产率、加工成本、加工质量和刀具寿命。因为陶瓷刀具具有硬度高、耐磨性好、耐热性高等优点以及脆性较大、强度较低等缺点,所以必须充分考虑这些特点来选择合适的切削用量,以达到提高生产率、保证加工质量的目的。?

    (1)切削深度ap的选择?用陶瓷刀具加工时,为了缩短加工时间,应尽可能选择较大的切削深度,以便在一次走刀后切去大部分余量。由于切削深度受机床功率和工艺系统刚性的限制,一般粗加工钢和铸铁时,允许的最大切削深度为2~6mm,通常取ap>1.5mm;精加工时取ap<0.5mm;加工淬硬钢时,一般都是半精加工或精加工,余量和切削深度较小。当工艺系统刚性比较差时,应选取较小的切削深度,否则容易引起振动,使刀片破损。

    (2)进给量f的选择?合理选择进给量是成功应用陶瓷刀具的关键。进给量主要受陶瓷刀片强度及工艺系统刚性的影响,精加工时还要受被加工表面粗糙度的影响。

?因为陶瓷刀片的强度比硬质合金刀片低,所以进给量也应低些。一般可预选得小一些,通过实践逐步增加。精车普通钢和铸铁,进给量f选取为0.10~0.75mm/r;精加工选取f=0.05~0.25mm/r,端铣时可选取每齿进给量af=0.1~0.3mm/z。加工淬硬钢时根据硬度不同而选取不同的进给量,一般车削选取f=0.1~0.3mm/r;端铣选取每齿进给量af=0.05~0.15mm/z。进给量对刀具破损的影响比切削速度大,选取较小的进给量,有利于防止或减少刀具的破损,因此,对于陶瓷刀具应选用较小的进给量和尽可能高的切削速度。?
    (3)切削速度v的选择?氮化硅陶瓷刀具适于高速切削。对一定的工件材料,切削速度主要受机床功率限制。结合已选定的切削深度ap和进给量f,如因机床功率不足,而使切削速度选得过低,则不仅不利于发挥陶瓷刀具的优越性,而且容易发生崩刃。应当适应减少进给量,甚至是切削深度,以便提高切削速度。目前陶瓷刀具的切削速度,虽然有的国家最高到1500r/min,但加工普通钢和铸铁,大多数仍然采用v=200~600m/min;加工硬度<65HRC的钢材时v=60~200/min;铣削一般钢和铸铁时v=200~500m/min;铣削耐热合金v=100~250m/min。?

    切削速度对切削屑形状影响很大,特别在v=350~1500m/min范围内,往往可以获得良好的切削形状,如在高速车削淬硬钢时,可能形成酥化的易于碎断的假带状切屑,而使切屑易于清理。用陶瓷刀具作低速切削时,不但与硬质合金刀具的切削性能相近,而且容易引起工艺系统的振动,使刀具发生崩刃。例如:在v<50m/min时车削抗拉强度为800~850MPa的钢材,陶瓷刀具很容易发生崩刃,甚至无法切削。在一定速度范围内高速切削时,切削温度的升高能改变工件材料的性能,提高陶瓷刀具的韧性,从而减少其破损,所以一般陶瓷刀具均采用干切削。而用陶瓷刀具断续切削时,如果切削速度提高太多,温差很大,产生的热应力会导致刀具破损。使用复合氮化硅陶瓷刀具,可以解决难加工材料的切削加工问题,改变传统的机械加工工艺,提高加工效率,节约工时及电力,同时可节约大量的生产硬质合金刀具所需要的贵重金属W、Co及Ti等,因此推广和应用新型陶瓷刀具具有广阔的发展前景。